
www.manaraa.com

How to Enhance UDDI with Dependability Capabilities

Anatoliy Gorbenko1 Alexander Romanovsky2 Vyacheslav Kharchenko1
1Department of Computer Systems and Networks

National Aerospace University “KhAI”
17 Chkalov Str., Kharkiv, 61070, Ukraine

2School of Computing Science
Newcastle University, Newcastle upon Tyne

 NE1 7RU, UK
A.Gorbenko@csac.khai.edu

V.Kharchenko@khai.edu
Alexander.Romanovsky@newcastle.ac.uk

Abstract

How dependability is to be assessed and ensured

during Web Service operation and how unbiased and
trusted mechanisms supporting this are to be devel-
oped are still open issues. This paper addresses the
following questions: who should publish dependability
parameters, in which way they should be distributed,
and who (and how) should monitor these parameters in
the global Service-Oriented Architecture. We discuss
several techniques of on-line dependability monitoring
and measurement, which extend the UDDI (Universal
Description, Discovery and Integration) Business Reg-
istry with dependability metadata publishing and moni-
toring capabilities. The paper also proposes UDDI
add-ons and light-weight user-side mechanisms for
public operational and exceptional reporting.

1. Introduction

The concept of Service-Oriented Architecture
(SOA) [1] was introduced in order to solve the prob-
lems of ensuring effective, reliable and secure interac-
tion of open distributed systems consisting of autono-
mous and independently developed application com-
ponents (services) deployed by different providers.
Service interoperability in SOA is ensured through
service interfaces being defined by common rules (the
WSDL1 description) and using a dedicated invocation
mechanism (SOAP2 messages). The descriptions of
these components can be found by other software sys-
tems in a dedicated registry, and the components they
invoked by means of XML-based messages transferred

1 W3C, Web Services Description Language (WSDL).

http://www.w3.org/2002/ws/desc
2 W3C, Simple Object Acess Protocol (SOAP).

http://www.w3.org/TR/soap12-part1

using Internet protocols. Achieving high dependability
of SOA is crucial for a number of emerging and exist-
ing critical domains, such as telecommunication, Grid,
e-science, e-business, etc.

SOA is unique in allowing access to a number of
services with identical or similar functionalities, pro-
vided by different vendors and deployed to different
platforms all over the Internet. In other words, SOA
possesses the inherent redundancy and diversity of the
existing Web Services [13]. To build dependable com-
posite SOAs, users should be able to choose and use
the most dependable components (i.e. Web Services)
from the existing ones of similar functionality but di-
verse nature. Generally speaking, this can be achieved
through UDDI3 Business Registries (UBR), which pro-
vide information about particular Web Services and
support service description, discovery and integration.
However, as stated in [8], the existing service discov-
ery mechanisms such as UDDI, UDDIe, WSIL, etc. are
rudimentary in that the information stored is often not
semantically rich enough for service differentiation. It
would be a mistake to automatically consider a UDDI
registry in its present state as an unbiased, trustworthy
third party. Current public UBRs contain much of what
is out of date, un-vetted and inconsistent. At the same
time, Web Services clients should be able to make de-
cisions about the Web services they will use at run-
time, based on metadata attributed to those services
[15]. Using UDDI metadata brings dynamic configura-
tion to Web Services software architecture [11]. Web
Service metadata might be associated with a set of ad-
ditional schemas defined in WSDL or ontologies, like
OWL (Web Ontology Language [16]). The W3C’s
Semantic Annotations for WSDL working group [12]
has proposed a new annotation model whereby a ser-

3 W3C, Universal Discovery, Description and Integration

(UDDI). http://www.uddi.org

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

1023

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.33

1023

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.33

1023

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.33

1023

www.manaraa.com

vice provider can annotate interface elements with a
small number of new WSDL extension attributes
which represent references to concepts in an ontology.

There are a lot of studies describing various ontolo-
gies (metadata) related to a number of non-functional
attributes of Web Services. Paper [4] provides an over-
view of resilience knowledge base (RKB) and Depend-
ability and Security (D&S) ontology derived from the
taxonomies of Avizienis et al. [6] and developed spe-
cifically for the RKB. This ontology is represented in
OWL and incorporates 166 terms related to Depend-
ability and Security, and 23 to Systems. A number of
papers (e.g. [2, 3, 5, 9]) describe QoS attribute specifi-
cation ontologies and QoS-aware discovery solutions
based on service level agreements (SLAs). Papers [7,
8] also discuss attributes of performance, dependability
(availability, reliability) and service cost as well as
mechanisms of their aggregation.

Other dependability-related metadata that we pro-
pose including into the WSDL description is informa-
tion about Web Service developers, implementation
technology (i.e. development metadata); the hosting
organization, location, deployment environment, net-
work connection capacity, etc. (deployment metadata).
Adding this meta-information will allow clients to de-
cide how to use diverse WSs by decreasing common
mode failures [14]. Finally, dynamic operational state
parameters, such as current service load (the number of
subscribers), CPU and memory usage, network load-
ing, etc. might also be added to the extended WSDL
description. Extending Web Service description with
dependability metadata will bring us closer to a de-
pendable Semantic Web [15]. However, the problem of
providing information about service dependability that
would be trustworthy from the client’s point of view
has yet to be solved.

In this paper we discuss solutions which enhance
UDDI by implementing dependable capability (i.e.
supporting dependability metadata dynamic publishing
and monitoring as well as dependability-oriented ser-
vice discovery). The main problem we are faced with
is ensuring the trustworthiness and objectivity of de-
pendability metadata. The rest of the paper is organised
as follows. In section 2 we discuss the problem of en-
hancing UDDI by implementing dependability capabil-
ity. Section 3 overviews Web Service dependability
attributes and shows how they can be assessed. Sec-
tions 4 and 5 introduce our proposals concerning de-
pendability attribute monitoring and dependability
metadata publishing as well as analysing various moni-
toring techniques. Finally, section 6 briefly discusses
the implementation of dependability capabilities.

2. UDDI Business Registry: key questions

UDDI Business Registries, which implement UDDI
2.0 or even current UDDI 3.0.2 specification [18], do
not offer useful mechanisms for publishing and moni-
toring dependability metadata, and discovering de-
pendability-based service, even though the idea of us-
ing such non-functional metadata for describing Web
Services by extending their WSDL description is not
new. A variety of Web Services metadata on QoS and
dependability have been proposed in [2-5, 7-9], but
these studies do not address the problem of acquiring
and estimating these attributes in a trustworthy and
impartial manner. Another key problem here is that
WSDL and UDDI use static descriptions of services,
whereas their dependability characteristics (e.g. avail-
ability, response time, etc.) can vary significantly dur-
ing service operation.

Our vision is that the UDDI Business Registry has
to act as kind of an impartial judge gathering trustwor-
thy information about services dependability and dis-
seminating it among services customers dynamically.
Bellow we present a list of primary functions that have
to be performed by an enhanced (‘active’) UDDI Busi-
ness Registry. The term ‘active’ here means that UDDI
Business Registry should perform activities aimed at
evaluation and publishing of an actual dependability of
Web Services registered (i.e. perform periodical moni-
toring, gather user’s side feedbacks, update WS meta-
data, etc.):

1. Publishing dependability (and QoS) metadata.
2. Dependability-based service discovery.
3. Dynamic monitoring and gathering of depend-

ability metadata.
Implementing the first two functions does not really

pose serious difficulties whereas ensuring the third one
still needs better understanding. The problem here is in
ensuring the objectivity and trustworthiness of meta-
data acquisition. In this context we should answer the
questions:

− Which dependability parameters are more impor-
tant for users and which of them can be easily (and
precisely) measured?

− Who should publish dependability parameters? –
Service provider, customers or third parties (e.g. a
UDDI Business Registry).

− Who (and how) should monitor these parameters
in the global SOA? – Service provider, customers or
third parties.

1024102410241024

www.manaraa.com

3. Which dependability attributes should
be monitored and how it can be done?

Dependability of a computing system is the ability
to deliver services, which can justifiably be trusted [6],
at the proper time. According to this definition we have
chosen the following dependability attributes, which
are relevant to Web Services, and are easy to monitor
during WS invocation: (i) availability; (ii) reliability;
and (iii) response time (performance). There are sev-
eral other attributes: describing QoS, service level
agreements (SLAs) and dependability including au-
thentication, confidentiality, non-repudiation, service
cost, etc. [7], but we do not deal with them in this pa-
per.

Service availability. The degree to which a service
is operational and accessible when it is required for use
determines its availability. System availability is a
measure of the delivery of correct service with respect
to the alternation of correct and incorrect services [6].
It also can be defined by a ratio of system’s uptime to
the overall execution time (including downtime). Un-
fortunately, such technique can hardly be applied for
determining the availability of Web Services in a
loosely coupled SOA. More adequately, the availabil-
ity of a Web Service can be defined by the ratio of the
total number of service invocations to the number of
events when the service was unavailable (i.e. an excep-
tion “HTTP Status-Code (404): Not Found” was
caught by client).

Service reliability. System reliability can be meas-
ured in terms of probability of failure-free operation,
mean time between failures (MTBF) or failure rate.
Reliability assessment of Web Services is a non-trivial
problem. First of all, we should take into account ser-
vice invocation rate which can vary widely. Another
problem is that Web Service can return errors of two
main types:

1. Evident erroneous response which results in an
exception message. The probability of such errors can
be measured by the proportion of the total number of
service invocation to number of exception messages
received (apart from exception “HTTP Status-Code
(404): Not Found” that indicate service unavailabil-
ity).

2. Non-evident erroneous response. It can be pre-
sent in the form of incorrect data or calculation errors
which do not entail immediate exception.

The last type of error is the most dangerous and can
lead to unexpected program behaviour and unpredict-
able consequences. Detection of such errors is possible
by comparing service response with response from
another diverse service.

Service performance (response time). The service
response time can be divided into (i) network delay
time, (ii) connection waiting time and (iii) execution
time. The execution time is the duration of performing
service functionality, the connection waiting time is the
time during request waiting in application server’s
queue, and, finally, network delay time is the delay of
request transmissions between service consumer and
provider. The network delay time can hardly be pre-
dicted due to uncertain network fluctuations whereas
connection waiting time and execution time depend on
service load and throughput. We propose a mechanism
that can be used for approximate estimation of differ-
ent parts of response time (see Fig. 1).

Ping remote host

Web
Service

Client

time

Host

IBM Web

Sphere

Application
Server Servlet

Establish TCP connectionService invocation

T1 - Network delay time
T2 - Network delay time + connection waiting time
T3 - Response time

T1

T2

T3

T4 - Connection waiting time = T2 – T1
T5 - Execution time = T3 – T2

T5

T4

Figure 1. Service response time estimation

It includes three sequential operations which should

be performed one after another without delay:
1. Pinging of a remote host (by sending the “ICMP

Echo Request” message) to estimate network delay
time.

2. Establishing a TCP connection with the applica-
tion server to estimate network delay time together
with connection waiting time.

3. Service invocation to estimate full response time.

4. Who should publish and monitor de-
pendability parameters?

Dependability parameters, as well as the level of
confidence in dependability [10] can be published by
service owners in the form of a WSDL extension (see
Fig. 2). However, this does not provide objectivity.
The approach which will diminish bias is to entrust
monitoring and publishing dependability parameters to
a third party. It would be quite natural if we decided to
use the UDDI Business Registry, which is in fact in-
tended for services description, discovery and integra-
tion, as such third party.

1025102510251025

www.manaraa.com

<dependability>
 <availability>0.91</availability>
 <reliability>0.89</reliability>
 <response-time>
 <unit>millisecond</unit>
 <av>750</av>
 <min>135</min>
 <max>2100</max>
 </response-time>
...
</dependability>

Figure 2. WSDL extension describing
dependability metadata

5. How to ensure the objectivity of depend-
ability metadata?

There are several obvious restrictions under which
the dependability monitoring has to be performed. First
of all, the monitoring should not occupy plenty of ser-
vice’s operation time or resources. Secondly, the moni-
toring capability should be implemented without essen-
tial changing of existing client or service software. The
other key question is how the objectivity and trustwor-
thiness of the dependability metadata and monitoring
results can be provided under existing limitations.

5.1. Direct dependability monitoring

The independence of dependability monitoring can
be provided by granting this responsibility to the third
parties. In [17] authors present a practical experience
report on dependability monitoring of three diverse
Bioinformatics Web Services performing similar
BLAST4 function. A mediator approach (set of inter-
mediate monitoring services) was used to monitor WS
dependability metadata and provide it for users. This
work was a motivation for us to show i) that there are
multiple similar WSs, ii) that they can be used simulta-
neously to achieve better dependability, iii) that this
can be done by using metadata, iv) that this metadata
can be collected at runtime.

It would be most natural if UDDI Business Regis-
tries together with providing services description (in-
cluding dependability metadata) would also perform
their direct monitoring with the purpose of guarantying
trustworthiness of measured dependability attributes.

The problem here is, since such dependability at-
tributes as “response time” or “availability” were
measured at registry site, they would not be adequate
for different clients dispersed all over the Internet. Be-
sides, the accuracy of dependability estimation will be

4 http://www.ncbi.nlm.nih.gov/blast/html/BLASThomehelp.html

insufficient because it depends on inspection rate that
can not be very high if we do not want to divert a ser-
vice from handling true user’s requests.

However, the direct monitoring can still be useful
for providing the so-called “test of liveness”: if a par-
ticular Web Service is unavailable for a long time, it
should be removed from the UDDI as undeployed.
This will help to maintain a UDDI Business Registry
in an actual state.

5.2. User-side dependability monitoring and
public reporting

There is no doubt that the most objective depend-
ability estimation can be done only from the user’s
side. Here we present two light-weight mechanisms,
providing user-side dependability monitoring coupled
with reporting to the UDDI Business Registry (i.e. pro-
viding user’s feedbacks). The idea of using such feed-
backs is similar to the one described in [9].

1. Public exception reporting. User’s application
should straight away notify UDDI Business Registry
about all exceptions catching during service invocation
(Fig. 3).

 Invoke
 Exception

 Exception report
 - Service URI
 - User IP address
 - Exception message
 - Invocation parameters
 - Date:time

Web
Service

Client UDDI
registry

time time time
Figure 3. Public exception reporting

Exception report has to contain the URI (Uniform

Resource Identifier) of a Web Service, user’s IP ad-
dress, exception message, service invocation parame-
ters and invocation time.

Exception messages and stack traces can be used for
determining the exact exception source (application
software, Web Service middleware or network) [20].
This information can be used dynamically during the
selection of the most suitable recovery technique.

2. Public operational reporting. After certain pe-
riod of time (daily or weekly) or certain number of
service invocations, user application sends an operation
report to the UDDI Business Registry (Fig. 4) which
contains the following information: Web Service URI
(Uniform Resource Identifier) and user’s IP; total
number of service invocations; amount of cases when

1026102610261026

www.manaraa.com

the service was unavailable (the exception message
was “HTTP Status-Code (404): Not Found”); total
number of exceptions caught; the minimal, the maxi-
mal and average response times, etc. The results of
dependability and performance monitoring of real e-
Science WS as well as the monitoring technique used
can be found in [17]. The UDDI Business Registry can
utilize user’s operational and exceptions reports to as-
sess the Web Service usage and its dependability at-
tributes, and to publish dependability metadata.

Taking into account locations (on the Internet) of a
service and a particular client (based on service URI
and user’s IP address analysis) the UDDI Business
Registry will be able to deal with network fluctuations
and to assess a number of dependability attributes, in-
cluding availability and average response time, for
certain groups of users according to their locations on
the Internet.

 - Service URI, User’s IP
 - Number of invocations
 - Number of unavailability
 - Number of exceptions
 - Min. response time
 - Max. response time
 - Av. response time

 Invoke 1

Response 1

 Operational report

 Invoke n
Response n

. . .

time time time

Web
Service

Client UDDI
registry

Figure 4. Public operational reporting

A deeper correlation analysis is also possible by

means of applying data-mining technology. For exam-
ple, all information gathering by UDDI is, undoubt-
edly, time sensitive and dependability assessment and
prediction can/should be dependent on the time of the
day/day of the week/etc. The information gathering by
UDDI can also help clients to set the time-outs cor-
rectly.

6. Implementation

Additional functionality can be implemented in the
UDDI as a set of plugins (add-ons), performing ser-
vices monitoring, gathering user’s feedback from op-
erational and exceptions reports, assessing dependabil-
ity attributes and performing further data mining. A
common WSDL description has to be extended with
new elements describing dependability metadata and
other non-function characteristics. XML Schema

(XSD) describing these elements and new namespace
should also be specified.

An example of extending UDDI with new capabili-
ties is described in [8]. The authors added new WSDL
elements and implemented advanced service discovery
functionality using JAXR5, which is registry independ-
ent, so, theoretically, they find it easy to implement
support for other discovery mechanisms. Our practical
work centres in developing add-ons enhancing the
open JUDDI repository [19]. These add-ons are pieces
of Java program codes supporting the following:

1. Service dependability monitoring.
2. Gathering and processing user reports and excep-

tions reports.
3. Service dependability estimation and ranking,

and further data-mining.
4. Publishing and updating dependability metadata.
5. Providing service discovery based on dependabil-

ity metadata.
The monitoring functions should be implemented

directly in the UDDI Business Registry or could be
performed by specialized external service, which
would periodically update dependability metadata in
the UDDI. The code could also form the basis for an
API to allow two-way interaction with users and de-
pendability-based service discovery and selection, per-
formed dynamically at runtime. In this work our goal is
to avoid making any changes in the user’s application.
Therefore, the program code performing dependability
monitoring and measurement on the client side and
notifying the UDDI Business Registry should be inte-
grated directly into the existing API for Web Services
(AXIS6, WSTK7, SAAJ8, etc.). Thus, the already exist-
ing application software should only be recompiled
with new WSDK libraries. Of course, the programmers
will have the ability to disable this new functionality if
they are not interested in it.

7. Conclusions and Future Research

The existing UDDI specifications still have poor
programming APIs which do not satisfy users’ needs.
In the paper we discuss a number of solutions called to
enhance the UDDI with functionality for implementing
dependability monitoring and publishing. Even though
the proposed solutions are not widely accepted, it is

5 Sun Microsystems, “JAXR”,
http://java.sun.com/xml/jaxr/index.jsp
6 Apache eXtensible Interaction System (AXIS):

http://ws.apache.org/axis/
7 IBM Web Services Toolkit (WSTK):

http://www.alphaworks.ibm.com/tech/webservicestoolkit/
8 SOAP with Attachments API for Java (SAAJ):

https://saaj.dev.java.net/

1027102710271027

www.manaraa.com

clear that they can be implemented as part of corporate
Service Oriented Systems using private UDDI Busi-
ness Registries. They also can be widely used in vari-
ous Grid systems which rely on open Web Services
Standards. Other useful capabilities which can be im-
plemented in the UDDI are connected with more rigor-
ous classification of the registered Web Services, sup-
porting a search of alternative services with identical or
similar functionality and providing trade-off between
service cost and dependability. The service provider
should be able to register several Web Services per-
forming the same operations; such services are typi-
cally located in different Internet domains. The UDDI
Business Registry has to return, to the user, a reference
to the service which is the most reliable and the fastest
for him to use. The next key question discussed in the
paper is how often Web Services should be monitored
by UDDI Business Registry. Our suggestion here is to
use two-level UDDI. All new Web Services have to
pass through the trial period during which they will be
monitored quite often.

Acknowledgments. This work is partially sup-
ported by the EPSRC TrAmS platform grant and ICT
FP7 DEPLOY IP.

10. References

[1] W3C, Web Services Architecture (2004):
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[2] Wang, Y., Vassileva, J. “Toward Trust and Reputation
Based Web Service Selection: A Survey”, Proc. Interna-
tional Transactions on Systems Science and Applications
(ITSSA) Journal, vol 3, no. 2 (2007).

[3] Menasce, D.A.. “QoS Issue in Web Services”. IEEE
Internet Computing, vol. 6, issue 6 (2002), pp. 49-68

[4] T. Anderson, Z.H. Andrews, J.S. Fitzgerald, B. Randell,
H. Glaser, I.C. Millard. “The ReSIST Resilience Knowledge
Base”. Proc. The 37th Annual IEEE/IFIP International Con-
ference on. Dependable Systems and Networks (DSN’2007),
Supplemental Volume, Fast Abstract, Edinburgh, UK (2007)

[5] O’Sullivan, J., Edmond, D., Hofstede, A. “What is in a
service? Towards Accurate Description of Non-Functional
Service Properties”, Kluwer Academic Distributed and Par-
allel Databases, vol 12 (2002), pp. 117-133

[6] Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. “Basic
Concepts and Taxonomy of Dependable and Secure Comput-
ing”. IEEE Transactions on Dependable and Secure Comput-
ing, vol. 1, no. 1 (2004), pp. 11-33
[7] Yang, S., Lan, B., Chung, J.-Y. “Analysis of QoS Aware
Web Services”, Proc. International Computer Symposium on
Web Technologies and Information Security Workshop (ICS)
(2006)

[8] Lock, R., Dobson, G. “Developing an ontology for QoS”,
Dependability interdisciplinary research Collaboration (In-
ternal Annual Project Conference), Nesc (National
e-Science centre), Edinburgh (2005), pp. 128-132.

[9] R. Jurca, B. Faltings, W. Binder “Reliable QoS monitor-
ing based on client feedback”. Proc. 16th international con-
ference on World Wide Web (2007), pp. 1003-1012.

[10] A. Gorbenko, V. Kharchenko, P.Popov, A. Romanovsky
“Dependable Composite Web Services with Components
Upgraded Online” / In R. de Lemos et al. (Eds.): Architecting
Dependable Systems III, LNCS 3549. Berlin, Heidelberg:
Springer-Verlag (2005), pp. 92-121.

[11] K. Januszewski “The Importance of Metadata: Reifica-
tion, Categorization, and UDDI”. Microsoft Corporation.
http://msdn2.microsoft.com/en-us/library/ms953942.aspx

[12] W3C: Semantic Annotations for WSDL (SAWSDL):
www.w3.org/2002/ws/sawsdl

[13] A. Gorbenko, V. Kharchenko, A. Romanovsky. “Verti-
cal and Horizontal Composition in Service-Oriented Archi-
tecture”. Proc. Workshop on Methods, Models and Tools for
Fault Tolerance at IFM 2007, Oxford, UK (2007).

[14] Lyu M.R. (edit.) Handbook of Software Reliability En-
gineering, McGraw-Hill Company, 1996, 805 p.

[15] W3C: Semantic Web Activity: Advanced Development.
http://www.w3.org/2000/01/sw/

[16] W3C: Web Ontology Language (OWL).
www.w3.org/2004/OWL/

[17] Y. Chen, A. Romanovsky “Improving the Dependability
of Web Services Integration” IT Professional: Technology
Solutions for the Enterprise, IEEE Computer Society, issue
January/February (2008), pp. 20-26

[18] UDDI Version 3.0.2 Specification (2005): http://www.oasis-
open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-
20041019.htm

[19] Open source Java implementation of the UDDI specifi-
cation for Web Services (JUDDI):
http://ws.apache.org/juddi/��

[20] A. Gorbenko, I.E. Komari, V. Kharchenko, A. Mikhay-
lichenko “Exception Analysis in Service-Oriented Architec-
ture” / In H. C. Mayer, D. Karagiannis (eds.): Information
Systems Technology and its Application, GI-Edition Lec-
tures Notes in Informatics (LNI), P 107. GmbH, Bonn: Kölen
Druck+Verlag (2007), pp. 228–233.

1028102810281028

